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Dactylolide (1) is a naturally occurring, cytotoxic, 20-membered
macrolactone isolated by Riccio and co-workers from the Vanuatu
SpongeDactylospongiasp. (off the coast of the Vanuatu Islands).1

The relative configuration of the dactylolide stereocenters was fully
established by the Smith group through their recent studies
culminating in the first total synthesis of1.2 Dactylolide has a highly
unsaturated macrocycle skeleton and a very unusualR-acyloxyal-
dehyde functionality. Here, we report a total synthesis of dactylolide
(1) that features two distinct macrocyclization strategies: a novel
Ti(IV)-mediated macrolactonization of an epoxy-acid and a comple-
mentary RCM macrocyclization.

The strategic dissection of dactylolide (1) we have explored is
outlined in Scheme 1. A key event was the formation of bond A
by a Lewis acid-catalyzed opening of the C(19)/C(20) epoxide by
a carboxylic acid (box A), as was originally disclosed by Sharpless.3

This reaction could either precede or follow formation of bond B
[C(8)-vinyl anion to a C(7)-aldehyde] or B′ [ring-closing metath-
esis]. In either event, bond A construction was destined for a
sophisticated and, thereby, unprecedented acid-epoxide substrate
pair. The remaining challenge, construction of thecis-2,6-disub-
stituted-4-methylene tetrahydropyran, was addressed by an intramo-
lecular Sakurai cyclization reaction between a C(15)-enal and an
allylic silane (box C).

Synthesis of the two important pyran-containing building blocks
7a and7b is presented in Scheme 2. The critical union4 of enal25

and allylic silane (-)-36 was initially investigated with non-Brønsted
acids (BF3‚OEt2 or TMSOTf). While the yield of the 4-methylene
pyran unit4 was good, the cis/trans stereoselectivity was unac-
ceptable (∼2:1, cis:trans). Fortunately, the protic acid, camphor-
sulfonic acid (CSA), provided onlycis-4.5,7 Pivalate removal and
Dess-Martin oxidation furnished the common intermediate alde-
hyde5, from which iodoalkene6aor simple alkene6b were readily
produced. TBDPS removal from6b with TBAF was uneventful
and, from 6a, beneficial. That is, the minorZ-isomer of 6a
underwent facile E2-elimination to give a more polar (and separable)
alkyne. This suggests the potential utility of TBAF treatment as a
convenient and general protocol for improving theE/Z-ratio of many
1-iodo-1-alkenes. Finally, Sharpless asymmetric epoxidation set the
important C(19) stereocenter in each of7a and 7b (∼25:1 dr in
each case).

The final stages of our initial dactylolide synthesis are described
in Scheme 3. The vinyllithium species derived from the TBS ether
of vinyliodide7awas added to the C(1)-C(7) aldehyde85 to form
the C(7)-C(8) bond and carbinol9 as a nearly 1:1 mixture of
epimers. Protection of the new C(7) secondary alcohol, removal
of the C(1) pivalate ester, oxidation to the C(1) carboxylic acid,
and removal of the C(21) primary TBS ether gave epoxy-acid12,
the substrate for the focal macrocyclization. Exposure of a solution
of 12 in methylene chloride (∼2 mM) to titanium tetraisopropoxide
at 75 °C resulted in closure to the macrolactone13. Initial
experiments provided evidence for side reactions that limit the

ultimate efficiency of this cyclization. A macrocyclic lactone
engaged at C(20) [H(20): m atδ 4.9 ppm in the1H NMR spectrum]
and a C(1) isopropyl ester, both derived from initially formed13

Scheme 1

Scheme 2 a

a (a) CSA (5 mol %), Et2O, 78%. (b) (i) DIBALH, CH2Cl2, 80%; (ii)
DMP, CH2Cl2, 82%. (c) CrCl2, CHI3, THF, 76%. (d) Ph3PdCH2, THF,
90%. (e) (i) TBAF, THF, 72% (for6a), 95% (for6b); (ii) SAE, -25 °C,
89%.

Scheme 3 a

a (a) (i) TBSCl, ImH, CH2Cl2, 98%; (ii) n-BuLi, Et2O, -78 °C; then8,5

Et2O, 58%. (b) TBSOTf, 2,6-lutidine, CH2Cl2, 90%. (c) DIBALH, CH2Cl2,
97%. (d) (i) MnO2, CH2Cl2, 98%; (ii) NaClO2, NaH2PO4, t-BuOH/H2O,
Me2CdCHMe, 85%; (iii) TBAF, THF, 52%. (e) Ti(OiPr)4, CH2Cl2, 75°C,
40% 13 with 30% 12. (f) TBAF, THF, 85%. (g) 4-acetylamino-2,2,6,6-
tetramethylpiperidine-1-oxoammonium tetrafluoroborate, SiO2, CH2Cl2,
80%. (h) Pb(OAc)4, PhH, 90%.
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(TLC and1H NMR evidence), accumulated at longer reaction times.
Limiting the reaction time to∼12 h (∼50% conversion) minimized
byproduct formation (<5%) and permitted the isolation of13 and
unreacted12 as the only components. Importantly,13 is produced
as an∼1:1 mixture of C(7) epimers, demonstrating that the two
diastereomers of12 are comparably competent substrates for the
key closure. Removal of the C(7) TBS ether gave the triol14. The
chemoselective oxidation of the allylic alcohol in14 using a
stoichiometric amount of 4-acetylamino-2,2,6,6-tetramethylpiperi-
dine-1-oxoammonium tetrafluoroborate8 to give the diol enone15
is noteworthy. Final cleavage of the C(20)-C(21) diol with lead
tetraacetate provided (-)-dactylolide [1, spectral data (1H and13C
NMR, IR, and HRMS) match those reported for natural and
synthetic (+)-dactylolide9].

A more convergent construction of dactylolide (1) as well as its
subsequent conversion to the naturally occurring, acyclic carbino-
lamide zampanolide (21) is outlined in Scheme 4. Epoxide7b and
the trienoic acid185 were coupled by the action of Ti(OtBu)4 to
provide the ring-closing metathesis substrate19 (∼1:1 dr). The
vicinal diol was protected in situ with excess bis-trimethylsilylac-
etamide (BSA)5 in benzene, and RuCHPhCl2(PCy3)(H2IMes)10 was
directly added. Each diastereoisomer smoothly cyclized at 60°C,
and each gave rise to only a single C(8)-C(9) alkene ofE-
geometry. All three silyl ethers were removed to provide triol14
(68% from19). Finally, (-)-dactylolide (1) was converted to the
related natural product, zampanolide (21),11 and its C(20) epimer
(∼1:1 ratio) by the aza-aldol addition of the species derived from
titration of (Z,E)-sorbamide with 1 equiv of DIBALH (cf.,20).
Studies to further delineate the stereochemical aspects of this
transformation are continuing.5

In conclusion, our synthesis shows that the Ti(IV)-promoted ring
opening of “Sharpless epoxides” by carboxylic acids, even in
settings where both components are structurally complex, is
sufficiently versatile to serve as a key coupling strategy. Both the
convergent bimolecular union between7b and18 (Scheme 4) and
the intramolecular macrolactonization within12 (Scheme 3)
demonstrate this point. Other notable features include the proton-
catalyzed,cis-selective construction of pyran4 from enal2 and
allylic silane 3; the selective oxidation of triol14 by an oxoam-
monium ion; the efficient RCM reaction of the in situ (TMS)-

protectedR,ω-dienediol19; and the aluminum aza-aldol addition
reaction of “20” to 1 to construct the acyclic carbinolamide in
zampanolide (21).
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Scheme 4 a

a (a) Ti(OtBu)4, CH2Cl2, 75°C, 67%. (b) (i) BSA, PhH; (ii) RuCHPhCl2-
(PCy3)(H2IMes), PhH, 60°C, 77%; (iii) TBAF, THF, 89%. (c) (Z,E)-
MeCHdCHCHdCHCONH2, THF, DIBALH/hexanes; 1, THF, room
temperature.

C O M M U N I C A T I O N S

J. AM. CHEM. SOC. 9 VOL. 125, NO. 32, 2003 9577


